USN

First Semester M.Tech. Degree Examination, Dec.2014/Jan.2015 **Digital VLSI Design**

Max. Marks: 100 Time: 3 hrs. Note: Answer any FIVE full questions.

- Derive the equations for Ids for all 3-regions starting from fundamentals.
 - How do you change the above equation to reflect the effect of channel length modulation? (04 Marks)
 - c. Calculate Ids for nMOS enhancement transistor for following conditions: i) $V_{us} = 0.7V$ ii) $V_{gs} = 2V$ $\lambda = 0$ iii) $V_{gs} = 2V$, $\lambda = 0.15/V$. Given: $\mu_n = 600$ cm²/V, $C_{ox} = 7 \times 10^{-8}$ F/cm², $V_{T_o} = 1V$, $V_{DS} = 5V$, $W = 20\mu m$.

(06 Marks)

- (10 Marks) Derive expressions for VIH, VIL and Vth for CMOS inverter.
 - b. Derive the relation between $(W/L)_p$ and $(W/L)_n$ for symmetric CMOS inverter. Also discuss (06 Marks) the effect of K_R variations on VTC.
 - (04 Marks) c. Discuss the enhancement load nMOS inverter.
- a. Define propagation delays and derive the expression for τ_{PHL} and τ_{PLH} for CMOS inverter 3 (10 Marks) using differential equation method:
 - (06 Marks) b. Explain 3-stage CMOS ring oscillator.
 - c. Calculate the total resistance and total capacitance for uniform polysilicon line with length of 1000 μ m and a width of 4 μ m. Given; sheet resistance 30 Ω /square, unit area capacitance (04 Marks) $0.066 fF/\mu m^2$, unit length capacitance $0.046 fF/\mu m$.
- a. What is dynamic CMOS logic? Explain with aid of an example. (06 Marks)
 - b. Illustrate the cascading problem in a dynamic CMOS logic. How is it overcome? (06 Marks)
 - Discuss the dynamic voltage bootstrapping circuit with necessary mathematical equations. (08 Marks)
- Discuss the 3-transistor DRAM cell with read and write operations. (10 Marks) 5
 - Explain memory structure SRAM with read and write circuitry with aid of read and write (10 Marks) timing diagram.
- What is short circuit power dissipation? On what parameters does it depend? (10 Marks)
 - Describe the types of threshold CMOS circuits used to minimize dynamic power (10 Marks) consumption in CMOS digital ICs.
- Differentiate between CMOS and BiCMOS. (05 Marks) 7
 - (07 Marks) Explain the static characteristics of resistive load BJT inverter.
 - c. Draw the BiCMOS circuits for the following with nMOS transistor for removing the base iii) $y = \overline{A \cdot B}$. charge of bipolar transistor. i) $y = \overline{A}$ ii) $y = \overline{A + B}$ (08 Marks)
- What is the latch-up problem that arises in bulk CMOS technology? (08 Marks)
 - (05 Marks) Give any 5 guide lines for avoiding latch-up.
 - c. With aid of diagram explain the performance modeling procedure. (07 Marks)